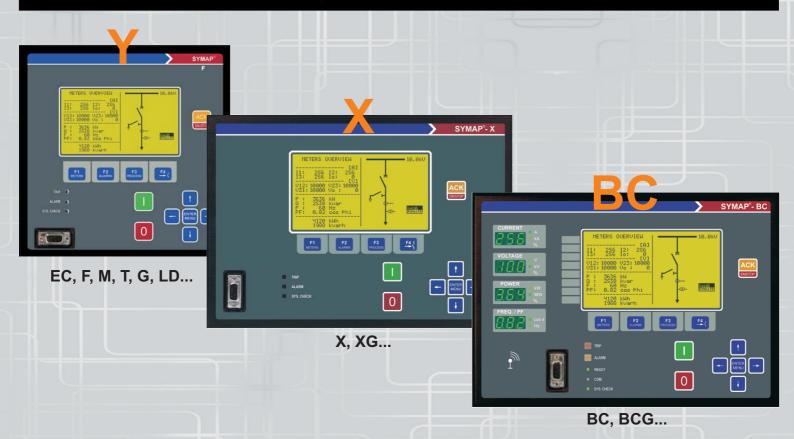

Digital Protection Relays



FOR LOW, MEDIUM AND HIGH VOLTAGES POWER SYSTEMS

SYMAP[®]



Product Overview

SYMAP® is a digital protection relay for use in low, medium, and high-voltage power systems. Because of its integrated protection functions and human-machine interface capabilities, it is an efficient and cost-effective solution for all types of switchbays. With three powerful microprocessors, SYMAP® offers complete protection functions for generators, motors (synchronous and asynchronous), transformers, power lines, and distributions. All protection functions can be activated simultaneously, and there are no limits to using all of them at the same time.

With SYMAP®, five main breaker controls can be activated with all the necessary functions, such as display, control, and blocking, for optimal breaker management. A small integrated PLC allows individual interlocks from controlling functions. For flexibility in commissioning and during use, both digital and analog outputs can be used to connect the SYMAP® control unit to main switchboard controls. Additionally, a variety of serial interfaces with different kinds of protocols can be used for communication between SYMAP® units and the central control system.

For diagnostics and monitoring, SYMAP® has three microprocessors that supervise each other, providing a watchdog system. Important functions are laid out in a double redundancy combination, operating independently with the second processor. Connected separately, an optional unit for short circuit protection operates parallel to the SYMAP® device and will do so even if the entire voltage fails.

Human Machine Interface(HMI)

SYMAP® is easy to program and operate. A large graphic LCD with optional LED indicators conveys important data, such as position of all connected breakers, parameter settings, and event histories, at a glance. Graphics and measurements are displayed side-by-side on the LCD, so that the user does not have to switch between pages.

The entire programming of SYMAP® can be done with the keys on its front panel, eliminating the use of external programming devices. The programming is built in and is menu-tree driven, making setting parameters an intuitive process - similar to inputting data in a modern handheld telephone. Optionally, parameters can also be programmed using a laptop computer. Using a laptop offers certain advantages, such as parameter data stored in the laptop can be easily input into other SYMAP® units. Either way, ease of programming is guaranteed and on-site visits by the manufacturer's engineers during commissioning are not required.

SYMAP® provides four hotkeys under the LCD offering access to four groups of values:

- "Meters,"
- "Alarm,"
- "Process," and
- "Breaker Control."

The user can press the hotkeys to scroll through pages of information pertaining to these values.

Under the hotkey "Meters," detailed information of electric measurement values, counters for active and reactive power, and of working hours is provided. Under the hotkey "Alarms," all active alarms, event stores, and blockings are displayed. Under "Process," all process data, such as synchronization display, motor thermal indication, and breaker counters, are shown.

Under "Breaker Control," up to five breakers can be accessed and controlled. When programming breaker controls, the user has access to various layout configurations available through a library of graphics maintained within SYMAP®. Programmed blockings remain active when manual control of the breaker is used. Each of the highlighted breakers in the LCD can be further controlled by the keys "O" and "I."

For security, access to SYMAP[®]'s parameter and breaker control data is protected by a code system. The code system offers dual access: by a transponder card or by password input.

Terminal Connection

All connections to SYMAP® are made with terminal plugs on the back of the device, allowing the device to be exchanged easily. The terminal blocks are divided into the following groups:

- Analog input for measurement
- Additional analog channels
- Digital inputs and outputs

- Communication interfaces
- Extended board (optional)

STATE OF THE PARTY OF THE PARTY

Analog Input for Measurement

SYMAP® provides inputs for analog sensors at the rear of the device. If terminal plugs for the Cts are disconnected, the circuits will be linked automatically so there is no disconnection in the CT circuit loops. A total of 17 analog inputs for current and voltage transformers are used for protection functions. The following list shows possible connections for current transformers (CT) and potential transformers (PT):

- 3 x CT for feeder current
- 3 x CT for differential current
- 2 x CT for ground current
- 3 x PT for feeder voltage
- 3 x PT for bus bar 1 voltage
- 3 x PT for bus bar 2 voltage
- 2 x PT for ground voltage

By use of combined sensors, SYMAP® can provide:

- 3 x for feeder current
- 3 x for feeder voltage

Communication

SYMAP[®] can serve as the main bay controller for the power management system or substation system. The following list shows the station system items available through SYMAP[®]:

- Remote supervision
- Remote control
- Remote parameter setting
- Central registration of measured and calculated values
- Central event logging
- Central fault recording, analysis and logging
- Plant power management

Communication Interfaces

- RS 232 on the front panel for programming and data output
- 2 CANBUS
- RS 422/485 port
- MODEM
- IEC 60870-5-103
- MODBUS
- PROFIBUS DP

Extended Board (Optional)

An extended board can be connected to SYMAP®, providing additional in and output channels. The extended board is customized to individual client requirements and can be equipped to a maximum of the following in and output channels:

- 36 digital inputs
- 24 relay outputs
- 8 analog outputs 4...20 mA
- analog inputs PT 100 / PT 1000 or analog inputs 4 20mA

Recording Unit

SYMAP®'s recording unit contains up to three separate parts:

- 1) event history
- 2) detailed protection function history
- 3) measure data recorder (optional).

All data recorded by the unit can be transferred and analyzed via a PC tool. And, regardless of power supply, the data store is permanent. SYMAP®'s data recording unit stores the following:

- Protection function events, such as activation and eventual intervention
- The change of binary inputs and outputs
- The control of Local/Remote/Scada
- The change of each switching device
- On-Off commands through central power management system
- Every attempt or trail to give a command prohibited by interlocking
- Every alarm signal (also from diagnostics)
- Data logs for measurement inputs

Event History

SYMAP® automatically collects and stores all activated events with their number, title, appearing and disappearing status, and a time stamp. A maximum of 5,000 events can be stored. In case of overflow, the oldest data will be recorded over.

Detailed Protection Function History

SYMAP® automatically collects and stores all activated events related to protection functions with a time stamp.

- Event number
- Event title
- Time stamp
- Pickup or trip value (with fault phase indication)
- Setting value
- Trip time
- 3-line voltage and current pickup, synchronized with the trip event

A maximum of 1,000 protection function events can be stored. In case of overflow, the oldest data will be recorded over.

Data Recorder (Optional)

The data recorder can log 16 analog inputs, 14 digital inputs and 12 digital outputs. The recorder has the following settings:

- Recorder on/off
- Number of samples per cycle (6, ..., 72)
- Recording period (5s 60 s)
- Pre-trigger (0 % 100 %)

The recording period depends on the number of samples. The recorder can be set with the pre-trigger in such a way as to record event data even before the event happens. Stopping the recorder can be triggered either by an event or by a preset time. For easier management and troubleshooting, event data can be transferred and analyzed via a PC tool. The transfer of data is made by a link through a plug on the front panel of the SYMAP® device..

Protection Functions

SYMAP® provides the protection functions shown in accordance to ANSI. The protection functions are based on IEC rules.

15Matching device	
24Overexcitation, volts / hertz	
25/A Automatic synchronizing	
27Undervoltage, instantaneous, definite time	
27BBus 1 undervoltage, definite time	
32Overload relay	
37Undercurrent	
40/QLoss of field	
46Reverse phase or phase balance current	
47Phase sequence voltage	
49Thermal overload protection	
50BFCircuit-breaker failure	
50Overcurrent, instantaneous	
50G/NCurrent earth fault, instantaneous	
51AC time overcurrent, definite time, IDMT	
51G AC ground overcurrent, definite time, IDMT	
51LRLocked rotor	
51VRVoltage restrained overcurrent	
59Overvoltage relay, instantaneous, definite-time, normal inver	se
59BBus overvoltage, definite time, IDMT	
59NResidual overvoltage	
64Ground overvoltage	
66Start inhibit	
67AC directional overcurrent, definite time, IDMT	
67GS/DAC directional earth fault, definite time	
78Vector surge supervision	
78SOut-of-step tripping	
79Auto reclosing	
81Frequency supervision	
81BBus frequency supervision	
86Electrical lock out	
87MMotor differential	
87GGenerator differential	
87TTransformer differential	
87LDLine differential	
87NRestrict earth-fault relay	
90Voltage regulating	
94Trip circuit supervision	
95iInrush blocking	
FFFuse failure (voltages)	

SYMAP® Digital Protection Devices

There are three series of SYMAP® units as follows:

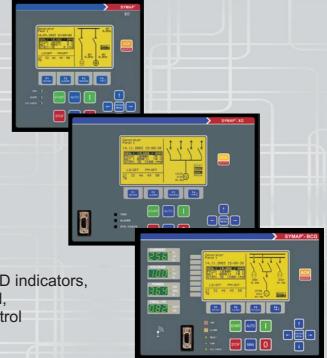
SYMAP® - Y Essential cost series

EC - ENGINE CONTROL

- FEEDER

- MOTOR

- TRANSFORMER


G - GENERATOR

LD - LINE DIFFERENTIAL

SYMAP® - X Basic series

SYMAP® - BC Basic series expanded to include LED indicators, event data recorder, extended board,

Power management, and diesel control

Technical Data

Description (V. V. DC)	Condition / Characteristics								
Dimension (W.Y.b.y.d.) (mm)	Condition / Characteristics								
Dimension (w x h x d) (mm)	192x192x110; 279x192x110; 279 × 192 × 150								
Weight	2,3kg ; 3,2kg; 5 kg 12-36 V DC, 36-72 V DC, 80-300 V DC or 60-230 V AC								
Power supply		00 V DC or 60-230 V AC							
Power consumption	< 30 W								
Ambient condition	Service temperature	-20 °C to +70°C							
	Storage temperature	-40 °C to +70°C							
	Transport temperature	-40 °C to +70°C							
	Humidity	< 80 %							
Degree of protection	Front panel	IP54 (IEC529)							
	Terminals	IP10 (IEC529)							
Vibration	Standards:	IEC 60068-2-6							
	Frequency range:	5 Hz to 100 Hz							
	Cross-over frequency:	15,8 Hz; +/- 1,0 mm amplitude							
		to 1 g acceleration							
	in 3 orthogonal axes (X,Y,Z)								
Seismic vibration*	Standards:	KWU DWR 1300							
	Frequency range:	5 Hz to 100 Hz							
	Cross-over frequency:	11,2 Hz; +/- 10,0 mm amplitude							
		to 5 g acceleration							
	Sweep rate 5 Hz to 35 Hz:	1 Oct/min							
	Sweep rate 35 Hz to 100 Hz:	10 Oct/min							
	in 3 orthogonal axes (X,Y,Z)								
Tests	Electromagnetic compatibility	EN 55011, EN 61000-4, KERI							
	Protection functions	IEC255, KERI							

Hardware capabilities

Туре	; -	Y)	X	BC			
	e - E0		F	G	M	T	LD	X	XG	BC	BCG
Front panel										11	
- Graphic-LCD	X		X	X	X	X	X	X	X	X	X
- Keyboard	X		X	X	X	X	X	X	X	X	X
- 7 segment displays	-		-	_	-	-	-	-	-	X	X
- 8 Alarm LEDs	_		_	_	_	_	_	_	-	X	X
- Transponder access	_		_	_	_	_	_	_	_	X	X
COMMUNICATION										12	
RS232	X		X	X	X	X	X	X	X	X	X
PROFIBUS	-	-	<u>A</u> X)	(X)	(X)	(X)	(X)	X	X	X	X
CANBUS 1		- (1 1	<u> </u>	<u>`</u>		X	X	X	X
	- V		-	-	-	-	-			X	X
CANBUS 2	X		-	- (\$7)	- (\$7)	(37)	-	X	X		
RS485 / RS422	- -		X)	(X)	(X)	(X)	(X)	X	X	X	X
IEC 60870-5-103, RS485	X		X	X	X	X	X	X	X	X	X
MODEM (analog)	X		-	-	-	-	-	-	-	-	-
MODEM (ISDN)	X	ш,	-		<u> </u>	<u> </u>	-	-	-	-	-
INPUTS/ OUTPUTS		}									
Digital inputs	20		20	20	20	20	20	14	14	14	14
Digital inputs ext. board	-		-	-	-	-	-	36	36	36	36
Relay outputs basic unit	16) [16	16	16	16	16	12	12	12	12
Relay outputs ext. board	-		-	-	-	-	-	24	24	24	24
ANALOG I/O 4-20 mA											
Analog in 420 mA	1		1	1	1	1	1	4	4	4	4
Analog out 420 mA	1		1	1	1	1	1	4	4	4	4
PT100 / PT1000 + ext. conve	rto	-			8	-	+	4	4	4	4
PT100 / PT1000 + ext. conve	rte -		-	-	 	-	-	21	21	21	21
PT1007 PT1000 ext. board			_	_	-	-	-	21	21	21	21
ANALOG INPUT FOR MEASU.	RING	4ND	PR	OTE	CTION	V	M .				
Total analog inputs	9		13	13	13	13	13	13	13	17	17
3 CT's for FEEDER CURREN	1T -		X		X	X	X	X	X	X	X
3 Ph.current via combined se	ns -		-	-	-	-	-	-	-	X	X
3 CT's for DIFF. CURRENT	-		-	-	-	-	-	-	-	X	X
CT for GROUND CURRENT	1 -	2	K *	X*	X*	X*	X*	X*	X*	X	X
CT for GROUND CURRENT	2 -		-	_	-	-	-	-	-	X	X
3 PT's for FEEDER VOLTAGI	E X		X	X	X	X	X	X	X	X	X
3 Ph.voltage via combined se			-	_	-	-	-	-	-	X	X
3 PT's for BUS VOLTAGE 1	X		X	X	X	X	X	X	X	X	X
3 PT's for BUS VOLTAGE 1	X		X	X	X	X	X	X	X	X	X
3 PT S 101 DUS VULTAGE I			X *	X*	X*	X*	X*	X*	X*	X	X
PT for GROUND VOLTAGE 1			_	-	-	-	-	-	-	X	X
	2 -										
PT for GROUND VOLTAGE 1 PT for GROUND VOLTAGE 2	2 -										
PT for GROUND VOLTAGE 1	2 -			<u>ا ا</u>			_	_		X	X

Software capabilities

	SYMAP [®]	Series -	Y				X		BC			
	-	Type	EC	F	G	M	T	LD	X	XG	BC	BCG
POWER MANAGEMENT MODULES										JI 1		
	ronizing unit		X	X	X	X	X	X	X	X	X	X
	sharing / asymmetrical load	ctrl.	_	-	-	-	-	-	-	X	-	X
	ency controller		X	-	-	-	-	-	-	X	-	X
	je regulator		X	-	-	_	_	-	-	X	-	X
	r factor control		_	-	-	-	-	-	-	X	-	X
	controller(big consumer)		-	_	-	-	-	-	-	X	-	X
	depending start/stop (PMS)		-	-	-	_	_	-	-	X	-	X
	ential trip management	- 11	-	-	-	-	-	-	-	X	-	X
	out management		X	-	-	-	-	-	-	X	-	X
	l control		X	-	-	-	-	-	-	X	-	X
LOGI	C BUILDER UNIT (PL	C)										
	er controls / interlocks		X	X	X	X	X	X	X	X	X	X
	diagrams		X	X	X	X	X	X	X	X	X	X
,	ECTION RELAYS (AC	CORDI	NG I	TO A	NSI	DEV	ICE	NIIN	1BE	RS)		
15	Matching device (motorpot		X	-	_	_	-	_	X	X	X	X
24	Overexcitation protection	.,	-	_	X	X	_	+-	X	X	X	X
25/A	Automatic synchronizing		X	X	X	X	_	+ -	X	X	X	X
27	Undervoltage, inst., def. tir	ne	X	X	X	X	X	X	X	X	X	X
27B	Bus undervoltage, def.time		X	X	_	-	X	X	X	X	X	X
32	Overload relay		_	X	X	X	X	-	X	X	X	X
37	Undercurrent		_	_	X	X	X	T -	X	X	X	X
40/Q	Loss of field, reac.power, in	mpedance	_	-	-	-	-	-	X	X	X	X
46	Reverse phase current		_	-	X	X	_	-	X	X	X	X
47	Phase sequence voltage		X	X	X	X	X	X	X	X	X	X
49	Thermal overload protection	on	-	X	X	X	X	-	X	X	X	X
50BF	Circuit-Breaker failure		_	X	X	X	X	X	X	X	X	X
50	Overcurrent, instantaneou	IS	-	X	X	X	X	X	X	X	X	X
50G/N	Current earth fault, instanta		-	X	X	X	X	X	X	X	X	X
51	AC time overcurrent, def.ti	me, IDMT	-	X	X	X	X	X	X	X	X	X
51G	AC Ground overcurr., def.t	ime, IDM	-	X	X	X	X	X	X	X	X	X
51LR	Locked rotor		-	-	-	X	-	-	X	X	X	X
51VR	Voltage restrained overcur	rent	-	-	-	X	-	-	X	X	X	X
59	Overvoltage, inst.,def.time		X	X	X	X	X	X	X	X	X	X
59B	Bus overvoltage, def.time		X	X	X	X	X	X	X	X	X	X
59N	Residual overvoltage		X	X	X	X	X	X	X	X	X	X
64	Ground overvoltage		X	X	X	X	X	X	X	X	X	X
66	Start inhibit		-	-	-	X	X	X	X	X	X	X
67	AC dir. overcurr., def. time		-	X	X	X	X	X	X	X	X	X
67GS/D	AC dir.earth fault, definite t	ime	-	X	X	X	X	X	X	X	X	X
78	Vector surge supervision		X	-	X	-	-	-	X	X	X	X
78S	Out of step tripping		-	-	X	-	-	-	X	X	X	X
79	Auto reclosing		-	X	-	-	-	X	X	X	X	X
81	Frequency supervision		X	X	X	X	X	X	X	X	X	X
81B	Bus frequency supervision	n	X	X	X	X	X	X	X	X	X	X
86	Electrical lock out		X	X	X	X	X	X	X	X	X	X
	Generator/Motor differentia	al	-	-	-	-	-	-	-	-	X	X
87T	Transformer differential		-	-	-	-	-	-	-	-	X	X
87LD	Line differential		-	-	-	-	-	X	-	-	-	-
87N	Restrict earth fault relay		-	-	-	-	-	-	-	-	X	X
94	Trip circuit supervision		X	X	X	X	X	X	X	X	X	X
95i	Inrush blocking		-	-	-	-	X	_	X	X	X	X
FF	Fuse failure (voltages)		_	X	X	X	X	X	X	X	X	X

Classification Approvals

The SYMAP® families have approval from the following classification societies:

Germanischer Lloyd

American Bureau of Shipping

Bureau Veritas

Det Norske Veritas

Lloyds Register of Shipping

Polish Register of Shipping

Russian Maritime Register of Shipping

China Classification Society

Nippon Kaiji Kyokai

(GL)

(ABS)

(BV)

(DNV)

(LR)

(PRS)

(RMRS)

(CCS)

(ClassNK)

Additional Tests:

CE

Deutsche Kraftwerksunion

Korea Electrotechnology Research Institute (KERI)

(KWU)

Company information

Stucke Elektronik GmbH Corporate Headquarters

Hamburg / Germany

Phone: +49 40 227 468 15
Fax: +49 40 227 468 24
Email: mail@stuckegmbh.de
Volker Dembowski, sales manager

Stucke Elektronik Korea Seoul / Korea

Phone: +82 (0) 231 411 307 Fax: +82 (0) 231 411 308 Email: gsl420@empal.com

Goon - Seop Lee,

Asia Pacific, marketing manager

Neva Electric Ltd. Russian Office of Stucke Elektronik

St. Petersburg / Russia
Phone: +7 (812) 118 84 11
Fax: +7 (812) 118 53 42
Email: corporate@nevael.spb.ru

Dr. Vladimir A. Rodin, CEO

Stucke Elektronik Australia Australia and Singapore

Phone: +65 6822 3618 Fax: +65 9431 2898

Address: The Enterprise #08-02, 1 Science Centre Road

Singapore 609077

Skype: raddas.stucke-asia stucke.asia.pacific@gmail.com
Email(HQ):raddas@stuckegmbh.de
Olaf Raddas, Managing Director

Stucke Elektronik Balkan d.o.o Belgrade / Serbia and Montenegro

Phone: +381(0) 11 3047 129
Fax: +381(0) 11 3047 129
Mobile: +381(0) 64 6123 638
Skype: stucke.balkan
Email: office@seb.co.yu
Email(HQ): krnjaic@stuckegmbh.de
Predrag Krnjaic, marketing manager

Distribution:

stucke

GmbH

Certified Company

EN ISO 9001-2000

elektronik